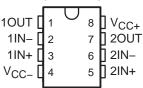
SLOS195G - FEBRUARY 1997 - REVISED NOVEMBER 2003


Low Supply-VoltageOperation . . . V_{CC} = ±1 V Min

Wide Bandwidth . . . 7 MHz Typ at V_{CC}± = ±2.5 V


 High Slew Rate . . . 3 V/μs Typ at V_{CC}± = ±2.5 V

• Wide Output Voltage Swing . . . ± 2.4 V Typ at V_{CC} $\pm = \pm 2.5$ V, R_L = 10 k Ω

• Low Noise . . . 8 nV/ $\sqrt{\text{Hz}}$ Typ at f = 1 kHz

TLV2362...D, DGK, P, PS, OR PW PACKAGE (TOP VIEW)

description/ordering information

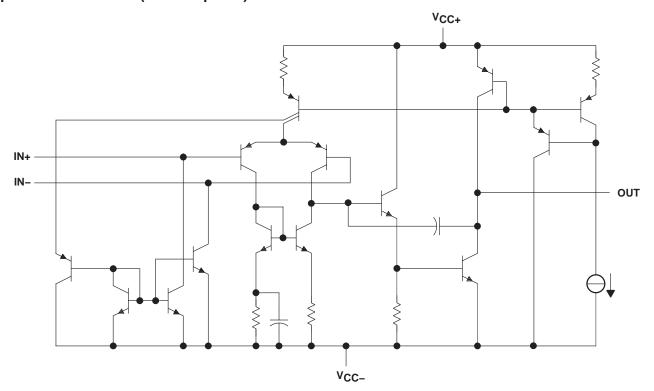
The TLV236x devices are high-performance dual operational amplifiers built using an original Texas Instruments bipolar process. These devices can be operated at a very low supply

voltage (± 1 V), while maintaining a wide output swing. The TLV236x devices offer a dramatically improved dynamic range of signal conditioning in low-voltage systems. The TLV236x devices also provide higher performance than other general-purpose operational amplifiers by combining higher unity-gain bandwidth and faster slew rate. With their low distortion and low-noise performance, these devices are well suited for audio applications.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
000 to 7000	COT 00 5 (DDV)	Reel of 3000	TLV2361CDBVR	\/A A C
−0°C to 70°C	SOT-23-5 (DBV)	Reel of 250	TLV2361CDBVT	VAAC
	COT 00 5 (DD)/\	Reel of 3000	TLV2361IDBVR	\/A A I
	SOT-23-5 (DBV)	Reel of 250	TLV2361IDBVT	VAAI
	MSOP/VSSOP (DGK)	Reel of 2500	TLV2362IDGKR	YBS
	PDIP (P)	Tube of 50	TLV2362IP	TLV2362IP
-40°C to 85°C	0010 (D)	Tube of 75	TLV2362ID	00001
	SOIC (D)	Reel of 2500	TLV2362IDR	23621
	SOP (PS)	Reel of 2000	TLV2362IPSR	TY2362
	TCCOD (DW)	Tube of 150	TLV2362IPW	TY2362
	TSSOP (PW)	Reel of 2000	TLV2362IPWR	112302

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS195G - FEBRUARY 1997 - REVISED NOVEMBER 2003

equivalent schematic (each amplifier)

ACTUAL DEVICE COMPONENT COUNT						
COMPONENT TLV2361 TLV2362						
Transistors	30	46				
Resistors	6	11				
Diodes	1	1				
Capacitors	2	4				
JFET	1	1				

SLOS195G - FEBRUARY 1997 - REVISED NOVEMBER 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)		3.5 V
Supply voltage, V _{CC} (see Note 1)		
Differential input voltage, V _{ID} (see Note 2)		
Input voltage, V _I (any input) (see Notes 1 and 3)		
Output voltage, VO		
Output current, IO		
Duration of short-circuit current at (or below) 25°C (o		
Package thermal impedance, θ _{JA} (see Notes 4 and 5	• •	
, , , , ,	DBV package	206°C/W
	DGK package	172°C/W
	P package	85°C/W
	PS package	95°C/W
	PW package	149°C/W
Operating virtual junction temperature, T _J		150°C
Lead temperature 1,6 mm (1/16 inch) from case for 1	0 seconds	260°C
Storage temperature range, T _{Stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at IN+ with respect to IN-.
- All input voltage values must not exceed V_{CC}.
 Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	MAX	UNIT
Vcc	Supply voltage		±1	±2.5	V
т.	One wasting free air termonature	TLV2361C	0	70	°C
¹A	Operating free-air temperature	TLV2361I, TLV2362I	-40	85	-0

SLOS195G - FEBRUARY 1997 - REVISED NOVEMBER 2003

TLV2361 and TLV2362 electrical characteristics, $V_{CC}\pm$ = ±1.5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			TA	MIN	TYP	MAX	UNIT
V	Input offset voltage	V 0	V _{IC} = 0		25°C		1	6	mV
V _{IO}	input offset voltage	$V_{O} = 0,$	ΔIC = 0		Full range			7.5	mv
1	Input offset current	V = - 0	V: 0		25°C		5	100	nA
IIO	input onset current	$V_O = 0,$ $V_{IC} = 0$		Full range			150	IIA	
l.s	Input bigg gurrent	у .		25°C		20	150	nA	
I _{IB}	Input bias current	$V_{O} = 0,$	VIC = 0		Full range			250	ΠA
\/	Common-mode input	N/: -1 < 7.5 mm)/			25°C	±0.5			V
VIC	voltage	V _{IO} ≤ 7.5 mV		Full range	±0.5			V	
V	Maximum positive-peak	$R_L = 10 \text{ k}\Omega$		25°C	1.2	1.4		٧	
V _{OM} +	output voltage	$R_L \ge 10 \text{ k}\Omega$	$R_L \ge 10 \text{ k}\Omega$		Full range	1.2			V
\/	Maximum negative-peak	$R_L = 10 \text{ k}\Omega$	$R_L = 10 \text{ k}\Omega$		25°C	-1.2	-1.4		٧
VOM-	output voltage	$R_L \ge 10 \text{ k}\Omega$		Full	Full range	-1.2			V
	Supply current	\/- 0	Natand		25°C		1.4	2.25	mA
Icc	(per amplifier)	$V_{O} = 0,$	No load		Full range			2.75	mA
Δ	Large-signal differential	V- 14 V	D: 40 l-0	TLV2361	2500	60	80		dB
AVD	voltage amplification	$V_0 = \pm 1 V$,	$R_L = 10 \text{ k}\Omega$	TLV2362	25°C		55		aв
CMRR	Common-mode rejection ratio	$V_{IC} = \pm 0.5 \text{ V}$			25°C		75		dB
ksvR	Supply-voltage rejection ratio	$V_{CC} \pm = \pm 1.5 \ V \ t$	so ±2.5 V		25°C		80		dB

TLV2361 and TLV2362 operating characteristics, V_{CC} \pm = ± 1.5 V, T_A = 25°C

PARAMETER				TYP	UNIT	
SR	Slew rate	$A_V = 1$,	V _I = ±0.5 V		2.5	V/µs
B ₁	Unity-gain bandwidth	Ay = 40,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF	6	MHz
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$,	$R_F = 10 \text{ k}\Omega$,	f = 1 kHz	9	nV/√ Hz

SLOS195G - FEBRUARY 1997 - REVISED NOVEMBER 2003

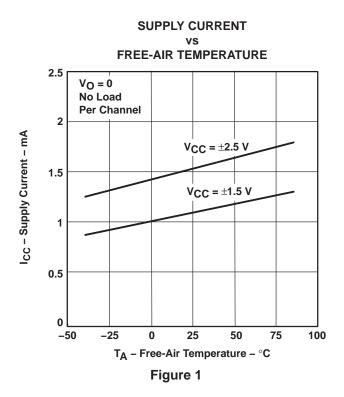
TLV2361 and TLV2362 electrical characteristics, $V_{CC}\pm$ = ±2.5 V (unless otherwise noted)

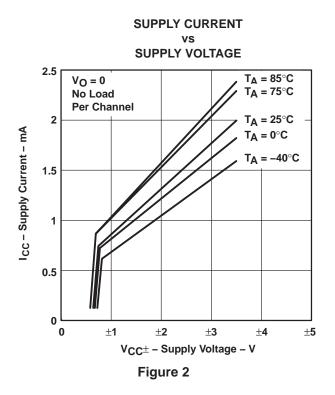
	PARAMETER	TI	EST CONDITIONS	3	TA	MIN	TYP	MAX	UNIT
V/	Innut offeet voltage	V- 0	\/·- 0		25°C		1	6	mV
VIO	Input offset voltage	$V_{O} = 0,$	V _{IC} = 0		Full range			7.5	mv
1	Input offset current	V = - 0	\/· = - 0		25°C		5	100	nA
lio	input onset current	$V_O = 0,$ $V_{IC} = 0$		Full range			150	IIA	
1	Innut high ourrent	V- 0	V/ 0		25°C		20	150	~ ^
I _{IB}	Input bias current	$V_O = 0$,	VIC = 0		Full range			250	nA
\/	Common-mode input	N/: -1 < 7.5 m)/			25°C	±1.5			.,
VIC	voltage	V _{IO} ≤ 7.5 mV		Full range	±1.4			V	
V	Maximum positive-peak	$R_L = 10 \text{ k}\Omega$			25°C	2	2.4		V
V _{OM+}	output voltage	$R_L \ge 10 \ k\Omega$	$R_L \ge 10 \text{ k}\Omega$		Full range	2			V
\/	Maximum negative-peak R _L = 10 kΩ			25°C	-2	-2.4		V	
VOM-	output voltage	$R_L \ge 10 \text{ k}\Omega$			Full range	-2			V
1	Supply current	\/- 0	Nelsed		25°C		1.75	2.5	A
Icc	(per amplifier)	$V_O = 0$,	No load		Full range			3	mA
A	Large-signal differential	\/- \(\(\) \/ \(\)	D: 40 l-0	TLV2361	2500	60	80		dB
AVD	voltage amplification	$V_O = \pm 1 \text{ V},$ $R_L = 10 \text{ k}\Omega$ TLV2362		25°C		60		aв	
CMRR	Common-mode rejection ratio	$V_{IC} = \pm 0.5 \text{ V}$			25°C		85		dB
ksvr	Supply-voltage rejection ratio	V _{CC} ± = ±1.5 V	to ±2.5 V		25°C		80		dB

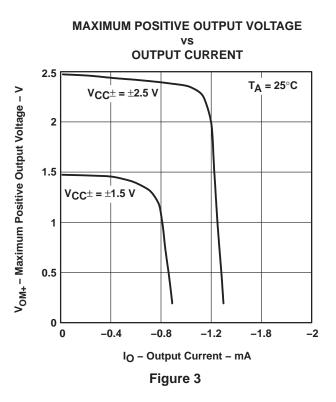
TLV2361 and TLV2362 operating characteristics, V_{CC} \pm = \pm 2.5 V, T_A = 25°C

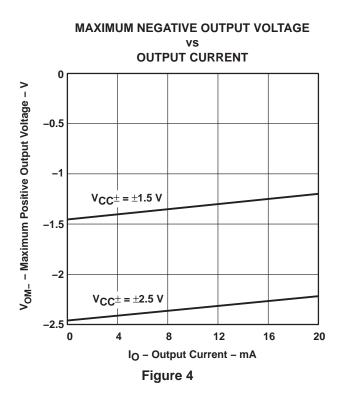
	PARAMETER		TEST COND	DITIONS	TYP	UNIT
SR	Slew rate	$A_V = 1$,	V _I = ±0.5 V		3	V/μs
B ₁	Unity-gain bandwidth	$A_V = 40,$	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF	7	MHz
V _n	Equivalent input noise voltage	$R_S = 100 \Omega$,	$R_F = 10 \text{ k}\Omega$,	f = 1 kHz	8	nV/√Hz
THD + N	Total harmonic distortion, plus noise	$A_V = 1$,	$V_0 = \pm 1.2 V$,	R_L = 10 kΩ, f = 3 kHz	0.004	%

SLOS195G - FEBRUARY 1997 - REVISED NOVEMBER 2003

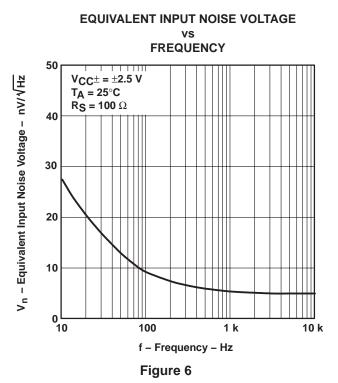

TYPICAL CHARACTERISTICS

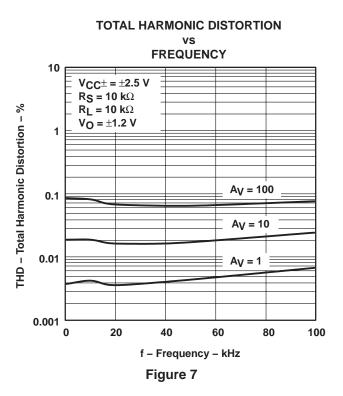

Table of Graphs

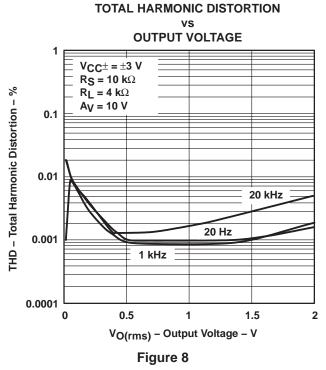

<u> </u>	
GRAPH TITLE	FIGURE
Supply current vs Free-air temperature	1
Supply current vs Supply voltage	2
Maximum positive output voltage vs Output current	3
Maximum negative output voltage vs Output current	4
Maximum peak-to-peak output voltage vs Frequency	5
Equivalent input noise voltage vs Frequency	6
Total harmonic distortion vs Frequency	7
Total harmonic distortion vs Output voltage	8



TYPICAL CHARACTERISTICS

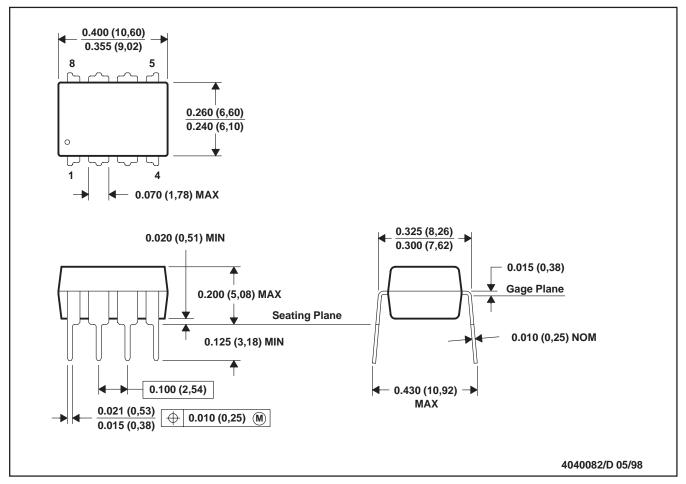





TYPICAL CHARACTERISTICS

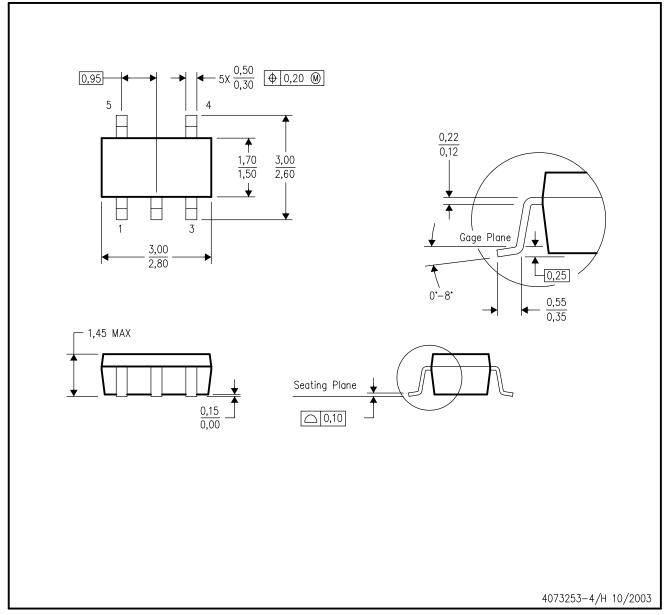
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE **FREQUENCY** V_{O(PP)} - Maximum Peak-to-Peak Output Voltage - V V_{CC}± = ±2.5 V 3 $V_{CC} \pm = \pm 1.5 \text{ V}$ 2 $T_A = 25^{\circ}C$ $R_L = 10 \text{ k}\Omega$ 1 1 1 1 1 1 1 1 1 0 100 k 10 M 1 k 10 k 1 M f - Frequency - Hz

Figure 5



P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

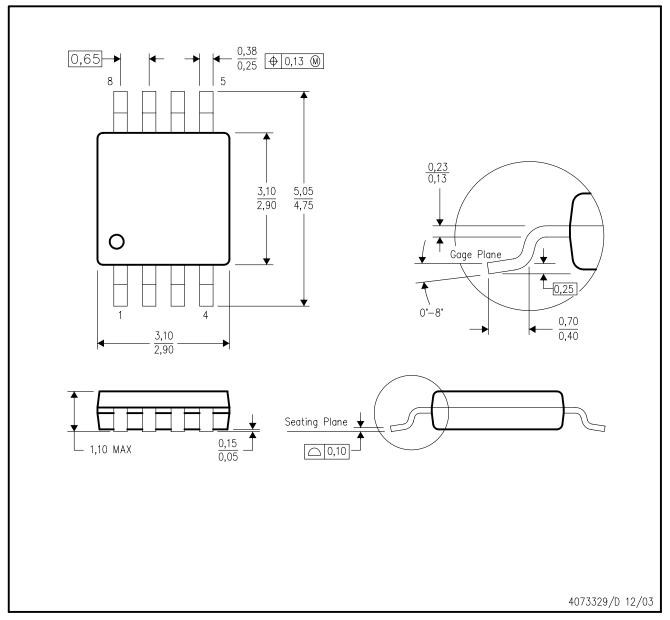

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to $http://www.ti.com/sc/docs/package/pkg_info.htm$

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

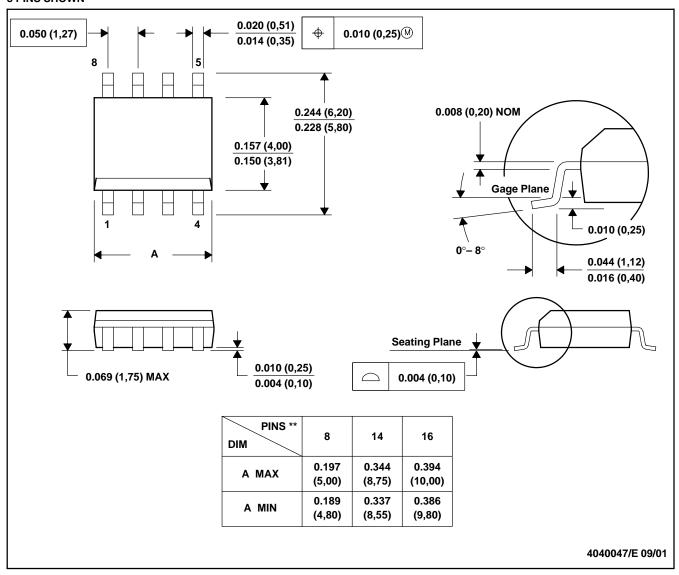

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- C. Body dimensions do not include mold fla D. Falls within JEDEC MO—178 Variation AA. Body dimensions do not include mold flash or protrusion.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

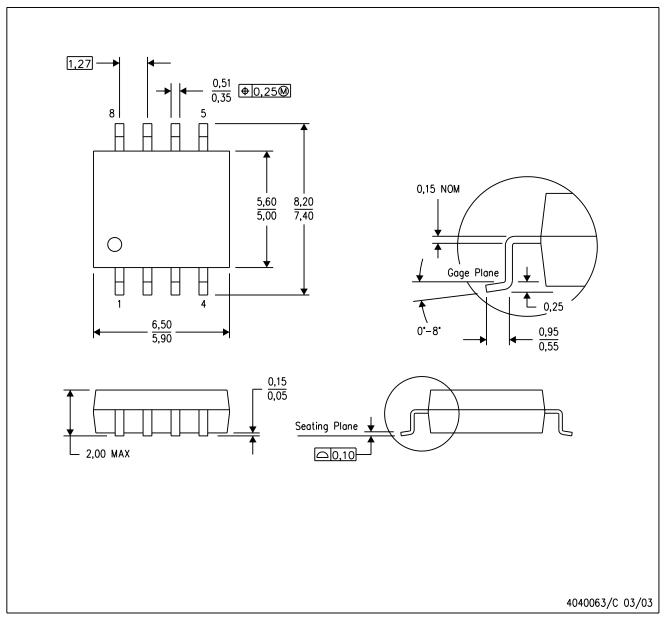
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation AA.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

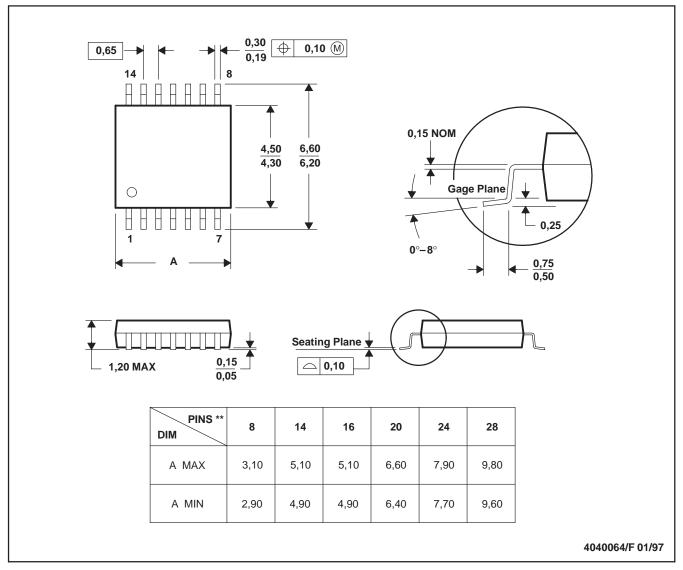
B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated